УДК 553.411.071(571.54)

ЗОЛОТО-ВИСМУТОВОЕ ПРОЯВЛЕНИЕ ПОГРАНИЧНОЕ (ВОСТОЧНЫЙ САЯН): СОСТАВ И СВЯЗЬ С МАГМАТИЗМОМ

© 2013 г. Б. Л. Гармаев, Б. Б. Дамдинов, А. Г. Миронов

Геологический институт СО РАН 670047, Улан-Удэ, ул. Сахьяновой, ба Поступила в редакцию 20.02.2013

Изучено золоторудное проявление Пограничное, характеризующееся тесной связью с гранитоидами сархойского гранодиорит-гранитного комплекса (О) известково-щелочной серии. Впервые для территории Восточного Саяна выделен золото-висмутовый тип оруденения. Рудные тела представлены жилами и прожилками кварца, обрамленными зонами грейзенизации в гранитах. На основе минералогического исследования руд и анализа корреляционных связей установлены три последовательно сменяющиеся минеральные ассоциации: 1) пирит-арсенопиритовая, 2) полиметаллическая (с блеклой рудой и сульфосолями Sb), 3) золото-висмутовая. По ряду признаков, таких как геологическое положение рудных тел, характер микровключений в акцессорных минералах гранитов, сделано предположение о связи золото-висмутового оруденения с гранитоидами.

DOI: 10.7868/S0016777013060038

ВВЕДЕНИЕ

Юго-восточная часть Восточного Саяна давно известна своей золотоносностью, здесь располагаются как собственно кварцево-жильные месторождения (Пионерское, Гранитное, Динамитное и др.), так и золото-сульфидные полигенные месторождения и рудопроявления (Зун-Холбинское, Зун-Оспинское и др.) (Миронов, Жмодик, 1999). Кроме золото-кварцевых месторождений, в регионе известны и другие типы золоторудной минерализации: золото-порфировый (Миронов и др., 2001), золото-ртутный и золото-серебряный в карбонатных толщах (Айриянц и др., 2002). Однако сведения о наличии золото-висмутового оруденения в юго-восточной части Восточного Саяна до настоящего времени отсутствовали. Наши исследования позволили выявить объект такого типа в данном регионе (Дамдинов и др., 2009).

Месторождения золото-висмутового типа широко развиты на Северо-Востоке России. Площади распространения их обычно совмещены с ареалами позднеколлизионных гранитоидов. Общим для всех объектов является их положение в надинтрузивной, апикальной или приконтактовой частях гранитных массивов (Мякитское, Тэутэджак, Чистое и др.); на месторождениях широко развиты процессы объемного и околорудного метасоматоза (грейзенизации, березитизации, окварцевания, хлоритизации и др.); золоторудные объекты такого типа характеризуются сравнительно крупными запасами при низких концентрациях золота, но с относительно равномерным его распределением (Горячев, Гамянин, 2006). Породы, вмещающие оруденение, представлены гранитоидами, состав которых изменяется от гранодиоритов до гранитаплитов, а также терригенно-карбонатными и терригенными отложениями, смятыми в напряженные складки в результате раннемеловых коллизионных процессов (Гамянин и др., 2003).

ГЕОЛОГИЧЕСКОЕ ПОЛОЖЕНИЕ РУДОПРОЯВЛЕНИЯ

Рудопроявление Пограничное расположено в западной части Гарганской металлогенической зоны в пределах Дибинского рудного поля (Рощектаев и др., 2004) вблизи границы с Монголией. В геологическом строении рудопроявления принимают участие гранитоиды сархойского комплекса (О), прорывающие вулканогенно-осадочные породы дибинской свиты, предположительно докембрийского возраста. В экзоконтактовой части породы превращены в андалузит-содержащие роговики.

В северной части рудопроявления развиты вулканогенные образования среднего-кислого состава сархойской серии (R₃), в восточной — карбонатная формация раннего—среднего палеозоя (мангатгольская свита). Кроме того, в северной части рассматриваемой территории развита формация неоген-четвертичных оливиновых базальтов (фиг. 1).

Рудные тела представлены кварцевыми жилами, зонами кварцевого прожилкования и локали-

Адрес для переписки: Б.Л. Гармаев. E-mail: garmaevba-tor@gmail.com

Фиг. 1. Схематическая геологическая карта рудопроявления Пограничное (составлена по материалам Дибинской ГСП, 1966–67 гг.).

1 — моренные отложения (Q); 2 — оливиновые базальты (N_{II} – Q_I); 3 — доломиты, известняки, конгломераты (мангатгольская свита, PZ_{1-2}); 4 — вулканомиктовые песчаники, гравелиты, алевролиты, лавы, лавобрекчии, туфы (сархойская серия, R_3); 5 — песчаники, сланцы, алевролиты (дибинская свита, PZ_1); 6 — граниты, гранодиориты (сархойский комплекс, O); 7 — грейзенизированные граниты; 8 — зоны скарнирования; 9 — контактовые роговики; 10 — золоторудные кварцевые жилы (вне масштаба); 11 — тектонические нарушения.

зованы преимущественно в эндоконтактовой (апи-кальной) части гранитного массива.

Гранитоиды сархойского комплекса впервые были описаны Д.В. Титовым в 1946 году в бассейне р. Сархой как совокупность интрузивных массивов, сложенных серыми, розовато-серыми и розовыми средне-крупнозернистыми, часто порфировидными биотитовыми и роговообманковобиотитовыми гранитами. В последующем гранитоиды были выделены в бассейнах рек Ока, Иркут, Китой, Онот и Урик (Добрецов и др., 1989). Первоначально временем формирования сархойских гранитоидов считался поздний силур-ранний девон. Позднее, ввиду отсутствия верхней возрастной границы, многие исследователи относили сархойский интрузивный комплекс к раннему палеозою (Добрецов и др., 1989). Однако, по представлениям А.Б. Кузьмичева (2004), раннепалеозойские гранитоиды Тувино-Монгольского массива различных геохимических типов, относимые ранее к сархойскому, огнитскому и сумсунурскому комплексам, объединены в единый постколлизионный гранитоидный магматический цикл, связанный с коллизией Тувино-Монгольского микроконтинента с континентальными и островодужными террейнами, слагающими в современной структуре его каледонское обрамление. Этот процесс сопровождался высокоградиентным метаморфизмом, достигавшим гранулитовой фации, и выплавлением синколлизионных гранитоидов на периферии массива. В его внутренней части синколлизионные гнейсо-граниты отсутствуют. Почти одновременно с этими событиями произошла коллизия формирующейся каледонской складчатой области с Сибирским кратоном. Возрастные рамки коллизионного гранитообразования ограничиваются интервалом 485-460 млн лет (Кузьмичев, 2004).

ПЕТРОГРАФИЧЕСКАЯ И ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ГРАНИТОИДОВ

Вмещающие оруденение гранитоиды сархойского комплекса представлены среднезернистыми

Фиг. 2. Дискриминационная диаграмма Дж. Пирса (Pearce *et al.*, 1984) Rb–(Y + Nb) для гранитов рудопроявления Пограничное.

Поля на диаграмме (граниты): СК – синколлизионные, ПК – постколлизионные, ВП – внутриплитные, ВД – вулканических дуг, ОК – океанические.

двуполевошпатовыми биотитовыми гранитами. Макроскопически они подразделяются на меланократовые и лейкократовые разновидности серого и светло-серого цвета. Структура пород гипидиоморфнозернистая, нередко порфировидная. Текстура пород однородная, массивная. Количественный минеральный состав пород весьма устойчив (%): кварц – 23–25, плагиоклаз – 30–35, калиевый полевой шпат – 5–10, биотит – 18–20. Вторичные минералы представлены эпидотом и серицитом. Кварц образует зерна неправильной формы, размеры зерен от сотых долей мм до 0.8-1 мм. Плагиоклаз распространен в породе равномерно, чаще всего имеет вид идиоморфных короткотаблитчатых и удлиненно-призматических отчетливо зональных зерен, размером от 0.1-0.5 до 0.8-1 мм. Калиевый полевой шпат представлен решетчатым микроклином. Биотит образует широкие и узкие пластинки, характерно кучное распределение зерен.

В приконтактовых частях гранитного массива типичные среднезернистые граниты сменяются гранит-порфирами, с порфировыми выделениями кварца. Это светло-серые среднезернистые породы, сложенные в разной степени измененным плагиоклазом, с переменным количеством кварца (30–40 об. %), заполняющего пространство между зернами плагиоклаза, и незначительного количества темноцветных минералов (5–10 об. %). Гранит-порфиры, как правило, ожелезнены, вследствие чего имеют бурую поверхность. В непосредственном контакте залегает зона аплитов, мощностью около 1 метра.

Граниты и гранит-порфиры характеризуются повышенными содержаниями крупноионных литофильных элементов (LILE) (Ba, Rb, Sr), а также высокозарядных литофильных элементов (HFSE) (Nb, Zr, Y, La, Ce), умеренно обогащены Pb. Почти во всех пробах фиксируется Sn в количестве 2–6 г/т. Отдельные пробы гранитов обогащены As, Mo (табл. 1). По химическому составу и геохимическим характеристикам граниты соответствуют гранитоидам известково-щелочной серии, формирующимся в условиях активной континентальной окраины (Таусон, 1977).

На дискриминационных диаграммах Пирса Rb–(Y + Nb) точки составов изученных пород попадают в поле постколлизионных гранитов и гранитов вулканических дуг (фиг. 2). Такая ситуация объясняется присутствием различных источников при выплавлении коллизионных гранитоидов (Кузьмичев, 2004).

Некоторые породы в значительной степени были подвергнуты процессам автометасоматизма, что привело к образованию грейзенов и грейзенизированных гранитов, альбит-мусковит-серициткварцевого состава, часто с мирмекитовыми срастаниями кварца и альбита.

Грейзенизированные граниты сложены в разной степени измененным плагиоклазом с переменным количеством ксеноморфного кварца (от 20–35 об. %). Плагиоклаз представлен двумя раз-

ГАРМАЕВ и др.

Компо- ненты	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SiO ₂	75.3	76.8	75.5	75.5	76.9	75.5	76.4	75.6	75.8	77.9	77.3	77.7	78.2	78.4
TiO ₂	0.09	0.04	0.12	0.12	0.09	0.1	0.1	0.11	0.1	0.08	0.1	0.1	0.09	0.08
Al_2O_3	12.55	14.4	13	13.2	11.8	12.35	12.35	12.7	12.7	10.8	13.3	13.85	12.85	11.8
Fe ₂ O ₃	1.04	0.73	0.53	-	0.76	0.86	0.93	1.25	1.03	1.12	1.22	0.57	0.91	0.85
FeO	1.22	0.24	0.94	0.67	0.49	0.86	0.43	1.43	0.63	0.67	0.39	0.39	0.43	0.49
MnO	0.02	0.03	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.01
MgO	0.08	0.05	0.13	0.19	0.08	0.09	0.12	0.07	0.05	0.08	0.1	0.23	0.23	0.29
CaO	0.2	-	0.19	0.61	0.1	0.16	0.18	0.18	_	_	0.1	_	_	_
Na ₂ O	3.25	2.22	4.21	2.8	3.51	3.38	3.66	3.36	3.44	2.79	0.1	0.07	0.1	1.41
K ₂ O	4.54	2.81	4.67	6.48	4.55	4.61	4.46	4.55	4.62	4.25	4.16	3.76	4.16	3.92
P_2O_5	0.43	0.05	_	-	0.09	0.5	0.06	_	_	0.7	0.1	0.19	0.08	0.36
П.п.п.	0.98	1.97	0.66	0.45	0.87	0.95	0.69	1.19	0.91	0.79	2.46	2.54	2.21	1.65
Сумма	99.7	99.34	99.96	100.3	99.25	99.37	99.39	99.46	99.29	99.24	99.35	99.41	99.27	99.26
Ва	190	82	100	1752	160	152	172	190	170	140	107	110	120	115
Rb	160	230	200	150	130	180	159	135	150	130	200	160	130	163
Sr	15	42	33	166	10	19	25	20	16	10	13	_	6	34
Li	30	30	50	-	30	-	-	40	30	30	-	30	40	_
Nb	11	28	59	4	8	10	11	9	10	6	14	11	6	8
Zr	80	51	140	87	75	94	103	76	80	61	120	110	68	91
Ti	540	240	719	719	540	600	600	659	600	480	600	600	540	480
Y	17	74	22	4	18	16	14	9	14	28	20	20	12	18
Th	9	13	16	17	12	23	20	13	14	13	27	16	_	14
U	3	6	8	4	2	5	4	5	3	2	7	3	4	4
Cu	20	10	15	3	10	7	5	15	15	10	4	8	10	4
Pb	78	63	30	37	30	99	25	29	29	1200	12	13	30	7
Zn	30	30	_	7	_	48	14	30	60	140	18	_	30	6
Sn	13	25	11	1	3	19	7	4	3	20	16	7	3	7
W	20	-	30	4	20	8	4	_	40	30	8	30	20	15
Mo	5	1	1	_	60	_	_	1	1	1	_	2	1	—
As	5000	450	17	-	700	5100	280	160	340	6200	750	2300	430	3500
Sb	8	17	_	-	12	13	-	_	18	53	9	32	16	24
La	16	7	4	19	30	22	18	21	21	19	25	33	26	19
Ce	33	14	7	38	52	45	37	37	34	33	51	56	40	37

Таблица 1. Химический состав и элементы-примеси гранитов и грейзенизированных разностей рудопроявления Пограничное

Примечание. 1–9 – граниты; 10–14 – грейзенизированные граниты, прочерк – элемент не обнаружен.

новидностями — таблитчатыми кристаллами размером 0.5—0.8 мм, с пятнистым агрегатом соссюрита, и мелкими (0.1—0.2 мм) выделениями сильно серицитизированного и альбитизированного плагиоклаза. Повсеместно по кристаллам плагиоклаза развивается тонкочешуйчатый агрегат серицита, также присутствуют зерна мусковита. Грейзены и связанные с ними рудные жилы развиты как в эндоконтактовой зоне, так и внутри интрузии.

По сравнению с неизмененными (слабоизмененными) гранитами, грейзенизированные разности отличаются пониженными содержаниями

Sr, Zr, La, повышаются концентрации рудообразующих элементов: As (до 0.3 мас. %), Sb (до 28 г/т), в меньшей степени, возрастают содержания Pb, Mo, Sn (табл. 1). Концентрации золота в грейзенизированных гранитах, содержащих кварцевые прожилки, достигают 0.44 г/т.

МИНЕРАЛЬНЫЙ СОСТАВ РУД

Рудные тела рудопроявления представлены жилами и прожилками кварца, обрамленными зонами грейзенизации (и кварцевого прожилкования) среди вышеописанных гранитоидов. Рудная минерализация в грейзенизированных гранитах представлена арсенопиритом, пиритом, в меньшей степени буланжеритом, галенитом. Минералы слагают вкрапленность (3–5 об. %) в околожильных оторочках, с удалением от кварцевых прожилков количество рудных минералов уменьшается.

Кварцевые жилы сложены молочно-белым кристаллическим кварцем, часто окрашенным, в результате пропитывания гидроокислами железа, в буроватые тона. Морфология жил и крупных прожилков простая, плитообразная. Резкие раздувы и пережимы отсутствуют. Рудная минерализация приурочена в основном к зальбандам жил. Распределение агрегатов рудных минералов чаще всего гнездово-вкрапленное, в некоторых случаях отмечаются прожилки мощностью до 1 см. Из нерудных минералов отмечается мусковит.

Минералогическими исследованиями установлено три последовательно сменяющих друг друга рудных минеральных ассоциации: 1) пиритарсенопиритовая, 2) полиметаллическая (с блеклой рудой и сульфоантимонитами Fe и Pb), 3) золото-висмутовая.

Пирит-арсенопиритовая ассоциация распространена в рудах наиболее широко.

В рудных телах арсенопирит формирует редкую рассеянную вкрапленность в кварцевой матрице или образует почти мономинеральные гнездообразные скопления зернистых агрегатов. Крупные зерна арсенопирита, как правило, несут следы хрупкой внутрирудной деформации, приведшей к образованию системы трещин. В этом случае агрегат арсенопирита приобретает катакластическую структуру, причем в порфирокластах отмечаются ромбические кристаллы. Эти трещины и пространство около катаклазированного арсенопирита заполняются более поздними минералами сфалеритом, галенитом, блеклой рудой и агрегатами сульфосолей Pb и Sb – буланжеритом, джемсонитом. Содержания мышьяка в арсенопирите варьируют от 41.79 до 45.93 мас. %, соответственно S/As отношение изменяется от 0.992 до 1.25

Таблица 2. Химический состав арсенопирита (мас. %)

№ п/п	Fe	As	S	Сумма	S/As	
1	35.07	44.14	21.09	100.3	1.116	
2	35.54	41.79	22.34	99.66	1.249	
3	34.82	44.12	20.81	99.74	1.101	
4	34.94	44.38	20.22	99.25	1.064	
5	34.77	45.93	19.52	100.22	0.992	

Примечание. Здесь и далее (таблицы 3–5) исследования выполнены на сканирующем электронном микроскопе Leo-1430 с энергодисперсионной приставкой для количественного анализа Inca-Energy, аналитик H.C. Карманов (ГИН СО РАН).

(табл. 2). В некоторых случаях в агрегате арсенопирита отмечаются включения галенита (фиг. 3а).

Пирит ранней минеральной ассоциации (пирит-I) образует как мелкую вкрапленность (0.5–1 мм) гипидиоморфных зерен, так и гнездовые скопления в кварцевых жилах, совместно с арсенопиритом. Пирит-I отвечает стехиометрическому составу, примеси в нем не установлены.

Минералы *полиметаллической ассоциации* представлены сфалеритом, галенитом, пиритом-II, блеклой рудой (тетраэдритом), в меньшей степени сульфоантимонидами свинца и железа. Минералы этой ассоциации образуют жильную ассоциацию поздних сульфидов (фиг. 3а).

Сфалерит образует гипидиоморфные зерна, часто с пойкилитовыми вростками пирита-II. Постоянно содержит примесь Cd (до 1.25 мас. %) и Fe (до 6.26 мас. %) (табл. 3). Среди минералов данной ассоциации кристаллизуется одним из первых (фиг. 3а, б).

Большая часть выделений галенита заполняет пространство между кристаллами сфалерита и агрегатами более ранней арсенопирит-пиритовой ассоциации (фиг. 3а, б).

Пирит-II слагает агрегаты идиоморфных зерен, в некоторых случаях катаклазирован. Постоянно присутствует примесь мышьяка (1.06–2.39 мас. %).

Блеклые руды представлены Ад-содержащим тетраэдритом (Moëlo *et al.*, 2008), чаще всего обрастают по краям кристаллы арсенопирита и пирита-I, местами корродируя их. Характер выделений агрегатов ксеноморфный, в некоторых случаях наблюдаются включения в пирите-I (фиг. 3в).

Сульфоантимониды Pb и Fe, как правило, наблюдаются в виде мелких гнездообразных выделений, окружающих ранние сульфиды (фиг. 3г). Минералы слагают прожилковидные выделения

Фиг. 3. Взаимоотношения минеральных ассоциаций (изображение в обратно рассеянных электронах). а – арсенопирит (1, 2), пирит (6, 7), сфалерит (3, 4, 5), галенит (8, 9), кварц (10, 11); б – арсенопирит (2), пирит (5, 6), сфалерит (1), галенит (3, 4), кварц (7); в – арсенопирит (1, 9), пирит (4, 6), блеклая руда (2, 3, 5, 7, 8), кварц (10); г – арсенопирит (1, 2), буланжерит (3, 4), джемсонит (5, 6, 7).

с незначительными явлениями коррозии. В некоторых случаях наблюдаются включения джемсонита в сфалерите.

Золото-висмутовая ассоциация представлена самородным золотом и висмутом, висмутином и

лиллианитом. Данная минеральная ассоциация относится к наиболее поздней в процессе рудоотложения.

Самородный висмут встречается в виде самостоятельных зерен, постоянно имеет в своем со-

ЗОЛОТО-ВИСМУТОВОЕ ПРОЯВЛЕНИЕ ПОГРАНИЧНОЕ (ВОСТОЧНЫЙ САЯН)

Zn	Pb	Cu	S	Fe	As	Sb	Ag	Cd	Сумма	Минерал
58.19	—	—	32.09	6.26	-	-	—	0.76	97.30	Сфалерит
62.92	_	_	33.38	3.05	_	_	_	0.88	100.23	»
61.73	-	—	32.88	2.96	-	-	—	1.25	98.82	»
62.44	—	—	32.26	2.55	-	—	—	0.81	98.06	»
64.77	—	—	32.55	0.98	—	—	—	0.69	99.00	*
_	89.11	—	12.60	-	-	-	—	_	101.71	Галенит
_	86.90	—	12.11	-	-	—	—	-	99.01	*
_	—	—	51.90	46.85	1.18	—	—		99.92	Пирит-II
-	—	_	51.71	47.32	1.06	—	_		100.10	*
_	—	—	52.60	46.71	1.67	—	—	-	100.98	»
_	—	—	51.35	45.70	2.39	—	—		99.44	*
5.52	_	32.60	23.91	1.15	_	29.04	5.86	—	98.08	Ад-содержащий тетраэдрит
6.06	—	32.79	24.04	1.30	_	28.33	5.09	_	97.61	»
4.79	—	31.43	23.62	2.14	-	28.44	6.92	—	97.34	»

Таблица 3. Химический состав минералов полиметаллической ассоциации (мас. %)

Таблица 4. Химический состав самородного золота рудопроявления Пограничное

Проба Аи		Ag	Сумма	Пробность	Порода	
пг-229-1	г-229-1 89.09		101.61	877		
пг-229-2	89.84	11.62	101.46	885	Грейзенизирован- ный гранит	
пг-229-3	90.94	10.73	101.67	894		
пг-15-1	98.79	1.21	100.00	988		
пг-15-2	98.64	1.36	100.00	986		
пг-15-17	98.10	1.90	100.00	981		
пг-15-5	96.35	1.99	98.34	980		
пг-15-8	97.07	2.93	100.00	971		
пг-15-14	94.54	6.08	100.62	940	Рудный кварц	
пг-15-3	90.25	10.81	101.06	893		
пг-15-9	88.37	10.78	99.16	891		
пг-15-6	86.31	12.79	99.10	871		
пг-15-19	88.47	13.18	101.65	870	1	
пг-15-10	77.34	21.14	98.48	785	1	

ставе примесь Sb от 1.05 до 5.87 мас. %. Висмутин представлен призматическими и игольчатыми кристаллами. Лиллианит слагает самостоятельные зерна и включения (реликты) в бисмите.

Зерна самородного золота выделены в небольшом количестве только из протолочек кварцевых жил и грейзенизированных гранитов. Отмечается разброс значений пробности золота в пределах 710—988%. Единственным элементом-примесью в самородном золоте является серебро, содержания варьируют от 1.21 до 21.14 мас. % (табл. 4). Форма золотин во включениях преимущественно

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 55 № 6 2013

Фиг. 4. Гистограмма распределения пробности золота в рудах проявления Пограничное.

округлая, отмечаются зерна пористого золота, размер золотин не превышает 0.1 мм. На гистограмме распределения пробности золота (фиг. 4) условно выделяются три типа золота: наиболее среднепробное распространенное (870-_ 940‰), высокопробное (970-1000‰) и отдельные знаки низкопробного (710-790‰). Эти три типа, по-видимому, и соответствуют выделенным минеральным ассоциациям. Похожее распределение пробности золота установлено на золотовисмутовых месторождениях Северо-Востока России, где также выделяется три максимума пробности (‰): 880-900, 820-840 и 740-780 (Гамянин, 2001).

Таблица 5. Изотопный состав серы сульфидов рудопроявления Пограничное

№ пробы	Минерал	$\delta^{34}S$
Пг-19	Пирит	7.6
Пг-25	»	7.4
Пг-79	Арсенопирит	6.8
Пг-338	»	6.9
Пг-435	»	4.9

Примечание. Изотопные исследования выполнены в ДВГИ ДВО РАН, аналитик Т.А. Веливецкая.

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ РУД

Рудные кварцевые жилы обогащены, прежде всего (мас. %): As - 2.12, Bi - 0.27, Pb - 0.077, Cu - 0.024, Sb - 0.056. Кроме того, повышены концентрации Sn (до 26 г/т). Содержания Ag достигают 2 г/т. Содержание золота в кварцевых жилах колеблется от 0.15 до 1.3 г/т. Также золото установлено в грейзенизированных гранитах, где его содержание достигает 0.44 г/т.

Проведенный анализ корреляционных зависимостей главных рудообразующих элементов (Au, As, Bi, Pb, Zn, Sb) в рудах показал следующие результаты. На корреляционных диаграммах (Pb + Zn)–Sb и (Pb + Zn)–Ag, точки составов руд образуют единый тренд (фиг. 5a, б). Что говорит о совместном выделении минералов указанных элементов при рудоотложении в составе полиметаллической ассоциации — галенит-сфалерит-блеклая руда-буланжерит-джемсонит-пирит-II. Широкие вариации содержаний рудообразующих компонентов связаны с неравномерным гнездовым распределением рудной минерализации в кварцевых жилах.

Золото обнаруживает отчетливую положительную корреляцию с Ві, тогда как с Аѕ наблюдается как положительная, так и отрицательная корреляция (фиг. 5в, г). Отсюда можно предположить, что золото отлагалось в связи с арсенопиритом и висмутовыми минералами. Положительная корреляция Au и As отмечается до содержаний в 50 мг/т, тогда как более высокие концентрации положительной корреляции не показывают. Следовательно, низкие концентрации обусловлены наличием золота в связи с арсенопиритом, возможно, в виде изоморфной примеси, либо в виде микро- или нановключений.

В пирите и арсенопирите из рудных кварцевых жил были определены изотопные составы серы (табл. 5). Как видно из таблицы, наблюдается некоторое утяжеление изотопного состава в пирите до 7.4–7.6 ‰, по сравнению с δ^{34} S арсенопирита, значения которого варьируют от 4.9 до 6.9‰. В то же время, изотопные составы сульфидной серы из пирита и арсенопирита на известных месторождениях золото-висмутового типа имеют значения, близкие к метеоритным (от -4 до + 3.1%), причем в составе серы арсенопирита преобладает более легкий изотоп (Гамянин и др., 2003), что в принципе наблюдается и в минералах изученного рудопроявления. Наблюдаемое утяжеление изотопного состава сульфидной серы в рудах проявления Пограничное по сравнению с мантийной серой связано, на наш взгляд, со смешением серы из различных источников при постколлизионном гранитообразовании, где источниками гранитоидов являлись разные по составу образования: осадоч-

540

Фиг. 5. Корреляционные диаграммы проявления Пограничное. a - (Pb + Zn)-Sb; 6 - (Pb + Zn)-Ag; B - Bi-Au; <math>r - As-Au.

ные толщи, фрагменты континентальной и океанической литосферы (Кузьмичев, 2004).

АКЦЕССОРНАЯ РУДНАЯ МИНЕРАЛИЗАЦИЯ В ГРАНИТАХ

Для оценки рудообразующего потенциала и связи золото-висмутового оруденения с гранитоидным магматизмом было проведено электронномикроскопическое изучение акцессорных минералов гранитов. Как известно, формирование акцессорной минерализации в гранитоидах происходит в течение всего периода становления материнского плутона, от кристаллизации до полного остывания, т.е. в интервале температур от более чем 700° до 200°С. В связи с этим в составе акцессориев могут формироваться и относительно низкотемпературные минералы, например, пирит, арсенопирит и др.

Для проведения исследований была выбрана проба наиболее "чистых" гранитов, не подверженных вторичным изменениям. Акцессорные минералы были выделены гравитационным способом и упакованы в препарат для исследований. В составе концентрата были установлены: пирит, циркон, апатит, арсенопирит, единичные зерна галенита, шеелита, барита, ильменита. При электронно-микроскопических исследованиях в акцессорных минералах были обнаружены микровключения рудных минералов. В связи с субмикронными размерами включений, микрозондовые анализы проводились в большинстве случаев качественно, хотя при наличии относительно крупных включений и количественно.

Относительно широким распространением пользуются микровключения теллуридов (петцит, калаверит, алтаит) в пирите. Такие включения имеют округлую, неправильную и изометричную формы и размеры примерно до 4 мкм (фиг. ба, б).

Наряду с теллуридами, в пирите в виде подобных микровключений и микропрожилков установлены галенит и самородное золото (фиг. 6в, г). Золото среднепробное (885–891‰). Из примесей фиксируется Fe, но, возможно, оно было захваче-

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 55 № 6 2013

40 мкм

10 мкм

60 мкм

10 мкм

L

1

но в процессе анализа из вмещающего пирита. В галените также фиксируется примесь Fe.

Арсенопирит присутствует в относительно небольшом количестве, образует таблитчатые кристаллы. Местами содержит мельчайшие каплевидные выделения рутила. Отношение S/As в минералах варьирует от 1.12 до 1.14, примесей не установлено.

В цирконе и апатите были установлены включения самородного Ag и аргентита соответственно (фиг. 6д, е). Размеры выделений достигают 8—9 мкм. В одном случае обнаружено выделение самородного Bi размером около 2 мкм на краю зерна ильменита.

Такой необычный состав микровключений в акцессорных минералах, в частности наличие самородного золота, серебра, теллуридных минералов Au, Ag, Pb, свидетельствует, на наш взгляд, о специализации гранитоидов на золотое оруденение. Наличие микровключений золота часто отмечается в акцессорных минералах гранитов, где золото обособляется совместно с сульфидно-оксидной фазой расплава (Некрасов, 1991), что связано с экстракцией благородных металлов акцессорными сульфидами и оксидами из расплава. Здесь же следует сказать, что в целом растворимость золота в расплавах кислого состава не меньше, а зачастую (например, при гибридизации) и больше, чем в расплавах основного состава, что установлено экспериментальными работами А.Г. Миронова и др. (1989). В составе расплава в рудообразующую систему привносятся также теллур и висмут, что выражается в появлении зерен самородного Ві и наличии золото-теллуридной ассоциации в пирите, однако, вследствие относительно высокотемпературных условий рудообразования, теллуридная ассоциация нестабильна и в рудах не отлагается.

В заключение следует отметить, что проанализирован был концентрат акцессорных минералов лишь из одной пробы гранитов. При последующих исследованиях возможно обнаружение и других минеральных фаз рудных минералов в составе акцессорных парагенезисов. Например, на золото-висмутовых месторождениях Северо-Востока России состав акцессорных минеральных ассоциаций рудовмещающих гранитоидов (где установлены такие минералы, как арсенопирит, теллуровисмутит, леллингит, самородный висмут и др.) в большой степени соответствует минеральному составу самих руд (Гамянин и др., 2003).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рудопроявление Пограничное обладает рядом черт, не свойственных типичным гидротермальным золоторудным месторождениям юго-восточной части Восточного Саяна. В отличие от Пионерского, Зун-Холбинского и Зун-Оспинского и других месторождений, здесь рудные тела локализованы в раннепалеозойских гранитоидах, основную роль в рудах играет Au-Bi-Pb-Sb-As-ассоциация элементов, причем наиболее продуктивным является золото-висмутовый парагенезис. Среди рудных минералов преобладает арсенопирит, установлено наличие самородного висмута и висмутовых минералов, не свойственных другим золоторудным месторождениям юго-восточной части Восточного Саяна.

Золотоносность руд золото-висмутовых месторождений, связанных с гранитоидным магматизмом, определяется преимущественно тонкодисперсной примесью ранней генерации золота в арсенопирите и леллингите и поздней мелкой и субмикроскопической генерацией - в ассоциации с комплексом висмутовых минералов. На основе взаимоотношений рудных минералов и корреляционного анализа рудообразующих элементов (Au, Bi, As, Mo, Pb, Zn, Sb) выделены три рудные минеральные ассоциации: 1) пирит-арсенопиритовая, 2) полиметаллическая, 3) золотовисмутовая. Как следует из корреляционных диаграмм, золото в значимых количествах присутствует в первой и третьей минеральных ассоциациях, тогда как с полиметаллической связаны крайне малые количества золота. Учитывая крайне незначительное количество свободного золота в рудах, можно предположить, что некоторая часть золота связана с арсенопиритом (форма нахождения золота неизвестна), а основная часть свободного золота выделяется в составе золото-висмутовой ассоциации. Содержания золота в арсенопирит-леллингитовых агрегатах или в монофракциях этих минералов в месторождениях Северо-Востока России колеблется в пределах 10-200 г/т, составляя в среднем в золото-грейзеновом — 35 г/т, золото-редкометально-кварцевом жильном – 60 г/т (Гамянин и др., 1998). Известно, что для руд плутоногенных месторождений золота (intrusion-related deposits)

Фиг. 6. Морфология микровключений в акцессорных минералах гранитоидов (изображение в обратно рассеянных электронах; микроскоп Leo-1430 с энергодисперсионной приставкой для количественного анализа Inca-Energy, аналитик С.В. Канакин (ГИН СО РАН).

а – микровключения петцита (1) и калаверита (3, 4, 5) в пирите (2); б – включение алтаита в пирите; в – микропрожилки самородного золота в пирите; г – включения галенита (1) и золота (2, 3, 5) в пирите (4); д – выделение аргентита (1) в апатите (2); е – срастание самородного серебра (1, 2) с цирконом (3).

характерна Au–Bi–Te–As \pm Mo \pm W геохимическая специализация, а также околорудная грейзенизация пород (Lang, Baker, 2001).

Условия формирования Au-Bi-ассоциации определены на основе имеющихся фазовых диаграмм в системе Au-Pb-Bi-S (Некрасов, 1991). Исходя из анализа фазовых диаграмм установлено, что самородный висмут стабилен в высокотемпературной области при температурах порядка 450-275°С. Известно, что при температуре выше 371°С мальдонит разлагается на самородное золото и висмутин, наличие которых установлено минералогическими исследованиями. Кроме того, известна температура стабильности ассоциации галенобисмутит-лиллианит-висмутин, равная 375°С (Hoda, Chang, 1975). На основе этих фактов можно предположить, что формирование золото-висмутовой минерализации происходило при температурах порядка 370-400°С. Давление, определенное по фенгитовому геобарометру (Massone, Schreyer, 1987), составляет 3 кбар.

Г.Д. Афанасьев (1981) выделил три основные группы критериев генетической связи оруденения с магматизмом: 1) структурно-террриториальной сопряженности магматических комплексов или конкретных магматических формаций с рудопроявлениями определенного металла; 2) близости геологического возраста конкретных магматических формаций и сопряженных с ними рудопроявлений; 3) специфики состава минералов и элементов-примесей, проявляющейся в породах и минералах магматитов и ассоциирующих с ними рудопроявлений (Афанасьев, 1981).

Действительно, наши геологические наблюдения на рудопроявлении показывают, что рудоносные кварцевые жилы не выходят за пределы материнского плутона. Происходит концентрация кварцевых жил и зон грейзенизации в эндоконтакте гранитоидного тела в связи с эффектом экранирования рудообразующих растворов вмещающими роговиками и терригенно-карбонатными породами. В виде включений в акцессорных минералах гранитов установлены следующие минеральные фазы: самородное Au, Ag, теллуриды Au, Ag, Pb и самородный висмут. Этот факт свидетельствует о специализации гранитов на золотое оруденение, что подтверждается и повышенными концентрациями рудообразующих элементов в ряде проб гранитов. Изотопный состав сульфидной серы, по-видимому, наследует состав серы протолита.

Полученные данные свидетельствуют о магматогенной природе золото-редкометальных месторождений и позволяют принять в качестве типовой так называемую «ортомагматическую» модель формирования оруденения. В таком случае, формирование околорудных грейзенов связано с процессом автометасоматоза и формированием высокотемпературных кварцевых жил в зонах трещиноватости, образующихся, по-видимому, при остывании магматического тела.

БЛАГОДАРНОСТИ

Авторы признательны Н.С. Карманову, С.В. Канакину, В.Ф. Посохову и Т.А. Веливецкой за проведение микрозондовых и изотопно-геохронологических исследований, а также Н.А. Горячеву за ценные советы и рекомендации при подготовке рукописи.

Исследования выполнены при финансовой поддержке интеграционного проекта № 29, партнерского интеграционного проекта № 31.

СПИСОК ЛИТЕРАТУРЫ

Айриянц Е.В., Жмодик С.М., Миронов А.Г. и др. Золотортутный и золото-серебряный типы оруденения в Восточном Саяне: минеральный состав, физико-химические условия образования // Геология и геофизика. 2002. Т. 43. № 3. С. 273–285.

Афанасьев Г.Д. Магматизм и рудообразование // Избранные труды. Магматические формации и общие проблемы геологической петрологии. М.: Наука, 1981. С. 406–437.

Гамянин Г.Н., Гончаров В.И., Горячев Н.А. Золото-редкометальные месторождения Северо-Востока России // Тихоокеанская геология. 1998. Т. 17. № 3. С. 94–103.

Гамянин Г.Н. Минералого-генетические аспекты золотого оруденения Верхояно-Колымских мезозоид. М.: ГЕОС, 2001.

Гамянин Г.Н., Горячев Н.А., Бахарев А.Г. и др. Условия зарождения и эволюция гранитоидных золоторудномагматических систем в мезозоидах Северо-Востока Азии. Магадан: СВКНИИ ДВО РАН, 2003.

Горячев Н.А., Гамянин Г.Н. Золото-висмутовые (золоторедкометальные) месторождения Северо-Востока России: типы и перспективы промышленного освоения // Золото Сибири и Дальнего Востока: геология, геохимия, технология, экономика, экология. Магадан: СВНЦ ДВО РАН, 2006. С. 50–62.

Дамдинов Б.Б., Гармаев Б.Л., Миронов А.Г., Дашинимаев З.Б. Золото-висмутовый тип оруденения в юго-восточной части Восточного Саяна // Докл. РАН. 2009. Т. 425. № 2. С. 208–212.

Добрецов Н.Л., Беличенко В.Г., Боос Р.Г. и др. Геология и рудоносность Восточного Саяна // Новосибирск: Наука, 1989.

Кузьмичев А.Б. Тектоническая история Тувино-Монгольского массива: раннебайкальский, позднебайкальский и раннекаледонский этапы. М.: Пробел-2000, 2004. Миронов А.Г., Альмухамедов А.И., Гелетий Д.С. и др. Экспериментальные исследования геохимии золота с помощью метода радиоизотопных индикаторов. Новосибирск: Наука, 1989.

Миронов А.Г., Жмодик С.М. Золоторудные месторождения Урик-Китойской металлогенической зоны (Восточный Саян, Россия) // Геология руд. месторождений. 1999. Т. 41. № 1. С 54–69.

Миронов А.Г., Жмодик С.М., Очиров Ю.Ч. и др. Таинское золоторудное месторождение (Восточный Саян, Россия) – редкий тип золото-порфировой формации // Геология руд. месторождений. 2001. Т. 43. № 5. С. 395–413.

Некрасов И.Я. Геохимия, минералогия и генезис золоторудных месторождений. М.: Наука, 1991.

Рощектаев П.А., Миронов А.Г., Дорошкевич Г.И. и др. Золото Бурятии. Кн. 1. Изд. 2-е // Улан-Удэ: Изд-во БНЦ СО РАН, 2004.

Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М.: Наука, 1977. *Hoda S.N., Chang L.L.Ya.* Phase relations in the systems $PbS-Ag_2S-Sb_2S_3$ and $PbS-Ag_2S-Bi_2S_3$. // Amer. Mineralogist. 1975. V. 35. No 7/8. P. 621–623.

Lang J.R., Baker T. Intrusion-related gold systems: the present level of understanding // Mineralium Deposita. 2001. V. 36. P. 477–489.

Massone H.J., Schreyer W.S. Phengite geobarometry based on the limiting assemblage K-fieldspar-phlogopite and quartz // Contributions to Mineralogy and Petrology. 1987. V. 96. № 2. P. 212–224.

Moëlo Y., Makovicky E., Mozgova N.N. et al. Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy // European Journal of Mineralogy. 2008. V. 20. P. 7–46.

Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrology. 1984. V. 25. № 4. P. 956–983.